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Abstract

This paper is concerned with the identification of the geometrical structure of the
system boundary for a two-dimensional diffusion system. The domain identification
problem treated here is converted into an optimization problem based on a fit-to-data 0

criterion and theoretical convergence results for approximate identification techniques
are discussed. Results of numerical experiments to demonstrate the efficacy of the
theoretical ideas are reported.
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I. INTRODUCTION

Domain identification problems are important in the design of engineering systems and

frequently such problems are treated as a branch of the calculus of variations which involves

nonlinear optimization techniques, optimal control theory, partial differential equations (el-

liptic, parabolic, hyperbolic, etc.) and related numerical methods. Domain identification

for elliptic systems has been studied theoretically and numerically by many authors (see

e.g., [5],[7],[10],[13]). For parabolic systems, a couple of numerical methods for identi-

fying the domain or boundary have been investigated.in [14],[151. . Until recently, most

investigations concentrated on the "optimal shape design problem" which is motivated by

numerous applications to structural, engine, airplane, ship designs, etc. (see [10] and the _

references therein).'In this paper, our concern for domain identification is motivated by an

application that is different from these shape design problems. However, as we shall see, .5

the resulting theoretical aspects are closely related. Recently, associated with the use of

fiber reinforced composite materials for aerospace structures, there is growing interest in

the detection and characterization of large structural flaws which may not be detectable

by visual inspection. One recent effort has focused on non-destructive evaluation methods

(NDE) based on the measurement of thermal diffusivity in composite materials (see e.g.,

(8]). Motivated by these problems, we consider the domain identification for parabolic

systems..

To explain our approach, we restrict our attention to a 2-D domain identification prob-

lem. We consider the bounded domain G(q) in two-dimensional Euclidean space as follows:

where x, -* r(xl, q) is some parameterized real function which is assumed to characterize

the unknown part of the boundary and q is a constant parameterization vector to be

identified among values in a given compact admissible parameter set Q. As depicted in

'46 A
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Fig. 1.1. The spatial domain G and its boundary aGI, aG 2, 4G., 8G 4.

Fig. 1.1, we assume the boundary of G(q) consists of the following components:

aG, = {X = (I,, 2 )o < X, < 1, X2 = 0}

a2 a = {X = (XI,X2)Iz, = 1, 0 < X2 < t}

aq = X = (X,X2)o < I<1, X2 = r(XI,q)}

aC4 = {X = (X,X2)IX = 0, 0 < X2 <

The measurement system is described by the following 2-D diffusion equation:

e...', au (t, x) '8u"t ,z) Au(t,x) + cou(t, x) = 0 in T x G(q) (1.a)
at

with the initial and boundary conditions,

u(0,x) = fro(x) on G(q) (1.1b)

2
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+ (, )=o on T'x OG, (1.1c)
u

c 1 -± + hu =- on T x aG 2  (1.1d)ax2au
c- 0 on Txacq (1.1e)-c x 1  h = T, (1 .1 d )

au

aC5- u =0 on T x OG4  (.f

where cl, co and h are thermal diffusivity, radiation coefficient and heat transfer coefficient,

respectively, which are given constants, and where T denotes the time interval (0, tf) during

which the process is observed. In the above system, f is the known boundary input defined V

on T x aG 1 and U0 is the given initial function defined on 12 where 11 is a known bounded

domain in R2 such that fl D G(q) for any qEQ. The system output is assumed to be on a

subset E of the boundary aG 1 , and mathematically, the observation is taken as

y(t,x,q) = u(t,xj,0,q) (t,x)ET x E. (1.2)

From a physical point of view, the system state u = u(t,x) represents the temperature

distribution at time t at location x = (X1 , X2) and, the boundary input f and the output

y correspond, respectively, to the thermal source (for example, by a laser beam) and

the observation of the temperature distribution at the surface of the material (e.g., by an

infrared imager) (see [8] for more details). Thus, the search for structural flaws in materials

may be formulated as an inverse problem for a heat diffusion system. The problem treated

here is that of identifying, from input and output data {f, 0 y} on (T x xG) x G x (T x

E), the constant parameter vector q in Q determining the geometrical structure of the

boundary 8 Gq.

In Section 2, we formulate this problem in an abstract setting in a Hilbert space. In Sec-

tion 3, for computational purposes, we approximate the Hilbert space by finite dimensional N

subspaces and we discuss the convergence analysis for the approximate identification prob-

lems. In Section 4, a practical optimization technique based on a finite element approach

is outlined. Some numerical results for a simple example are given in Section 5.
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II. PROBLEM FORMULATION AND BASIC ASSUMPTIONS

For the discussions here, we restrict the geometrical structure of the boundary aG, by

imposing the following hypotheses:

(H-O) The admissible parameter set Q is a compact subset of R';

(H-i) For each qcQ, we have r(q)cW.,(O, 1);

(H-2) For each qEQ, we have r(0,q) = r(1,q) =;

(H-3) There are constants 31 and 02 satisfying 0 < 31 < t < /3 2 < 0o such that, for qEQ,

we have

/1 5 r( ,q) < 62 a.e. in (0,1);

and

(H-4) There exists a constant M such that

r( ,q)- r(C,q)1,o Mjq -4 for q, eQ, E[0, 1],

where " ,, denotes the norm of W.,(0, 1).

We make the following assumptions for the class of system inputs:

(H-5) oEL 2 (11);

and

(H-6) fe n(T; L(o, 1)).

It follows from results in ([9], Ch. 3) that, under the hypotheses (H-1)-(H-3), (H-5), and

(H-6), for each fixed qcQ, there exists for (1.1) a unique solution u in L 2 (T; HI(G(q))).

Following standard procedures in optimal shape design techniques ([10], Ch. 8, p. 125),

we introduce the affine mapping

(z1,z 2 ) T (q) (xi, X2 )

4
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given by

z1 =X1

tx2z2 -r(--,, q)"

Note that this is equivalent to x, = z1 , X 2 = r(zi, q)z 2/I- Under this coordinate change, the

system domain G(q) is transformed into the fixed domain G

G(q) -0= (0,1) x (0,et)

which is independent of the parameter q. Using this coordinate transformation, we obtain

the system state ii given by
-",..

zt,z) = u(t) o T-'(q) = u (t,x ,(z 1), X2(Z, Z2 ));

this transformed state then satisfies the system equation

a FL(t, z) _ a aii t, Z) ba iiat, z)
at azC aj(z) az ) + E bj(z) (uz( 

+ co(t,z)= 0 in T G

• (2.1a)

with

ii (0, z) o(z) o T-(q) on C (2.1b)

Cet aii
r(zl,q) az2 + h(i- f) =0 on TxaG, (2.1c)

.9.'.

au- C1 aii
CI 5- -Z 2 r'(1,q)-- + h-= 0 on T x aG2  (2.1 d)

.9,,.

r'(z1 ,q)-t r- ){r(ziq}+]z 0 on T xaG3 (2.1e)
az1  r(z,q) . Oa

ai f, C1 ats
-Cz + - z2r (0, q)z- + hi 0 on Tx aG 4. (2.1f)

5
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In this system the coefficients are given by

all c1  (2.2)

a1 2 (Z) = a2 e(Z) cIr'(zl,q)z2  (2.3)
r(zi,q)

a 22 (Z) := [{r'(z1 , q)}1z2 + t2] (2.4)
a : r(z ,(q))2 q

b(z) clr'(zl,q) (2.5)
r(zi,q)

b2 (Z) := cl{r'(zl,q) 2z 2,.2(z.) {r(zl, q) } 2

where r' denotes dr/dzi, while aGq has been mapped into
0

G= {z = (zi,z2) O < zI < 1, z 2 =}.

If we consider a variational formulation similar to that in [2],[9], the system dynamics can

9 be described by the variational form:

., di (t)
< -t > +a(q)(i(t),¢)= L(t,q)(¢) for OcEH'(C)

dt

(2.7)
't'p

: ui(0) =;ff0 o T-1(q) ,

* where the bracket < .,. > denotes the scalar product in L 2 (G) and where a(q)(.,.) and

* L(q)(.) denote, respectively, a sesquilinear form on H'(G) x Hi(G) and a linear functional

on- H1 (G). Explicitly, a(q)(.,.) and L(q)(.) are given by for 0,tkEH'(G ) by

aalp th
]), [ )-- a,(z)g-- + _bj(z)7- ¢+co¢1]dz + r [¢k]8 dz

,_2 s_2(2.8)

9+ h [¢lk]8GU8G, dz2 , :

L(t, q)() := f f (t, zi)[¢laG, dzi, (2.9)U .f r(zl, q) ,

Al, %
6
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respectively. With some tedious calculations, one can readily establish the following useful I
A conditions on the sesquilinear form a.

Theorem 1: Let Iv and I denote the norms in the Hilbert spaces V = H(G) and

H L2 (G). Then, under the hypotheses (H-0) to (H-4), the sesquilinear forms a(q)(.,.)

satisfy the following inequalities: There exist positive constants kl, X,k 2, and k3 such that

%J1 for 0,Oc we have

T(q)(0,O) > k,ll - AI¢If, (2.10)

o(q)(0,O) <, k211vIt,Iv (2.11)

-(,<- a()(,) < k3 jq - 411k1vI01V for all q, EQ. (2.12)

Proof: We wish to show first that the sesquilinear form a is coercive. From (2.2)-(2.4)

and (2.8), the principal part of the differential operator becomes

Z C = 2clr'(zl, q)z 2  + C+ [ q
"j z q r(zI,q) I2,'z q 22  + e2q) 2

i~j<2

for (I, 2 )ER 2. (2.13)

By simple calculations and from (H-3), we have

~2  I 12 1 2j I 16 K 1(b2 + 1~22) (.4
,~<a,,q -2 {r \, '(z ,q)} 2 z2 + + {r(z1 ,q)}

5/.i, j:52 r2

where
":'K, = .

c~2

-5... This means the operator is strongly elliptic. For the coefficients bj(z,q)(j 1,2), from

* (2.5) and (2.6), it follows that

jbj(z,q)i l sup Ir'(zl,q)1 (2.15)
i3i Z,4E0,1J 5

:... 5.

(1" I r sup I'(zq)12 (2.16)

7 p
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respectively. We note that, from (H-0) to (H-4),

sup r'(z,q)I < R (2.17)
zie0[o,1l

where R is some constant independent of q. Hence, we obtain
0.

b,(z,q)I < K 2 < co for j 1,2, (2.18)

where (assuming R > 1)

,7-2K2 = cj (2.19)

For the last two boundary integrals in (2.8), by virtue of (H-3), the following inequality

holds:

t- [k21 80 dz1  + h[,02'aG ua,dz 2 >  h a2.20)
fo r (zi, q) ]I1IIo 8 2 UG 4 Z 8U[0

where ds denotes a line element on OG and aG = aG, U aG2 U aG4. From (2.14), (2.18),

and (2.20), we can derive the coercivity property of the sesquilinear form. Namely, the

sesquilinear form satisfies

e. a(q)('¢ K, ff 0 Id z - K2 f f& -z~~d

I L'd I 101

K z, zf 0 2
+K(3 (ffd+ a"1 8,0 ,Us(2.21)

; ~ ~where (,

K3= min 432 h).

Friedrich's second inequality ([1], p. 124) asserts that if OG is a nontrivial subset of ac,
. .'

then there exists a positive constant a such that

Jdz +]'[02 Ids > a(G)ltkI (2.22)

8
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By applying this to the last parenthesis of (2.21), we can conclude that

a(q)(€,€) > K4 1€2 - K 5 1€l , (2,23)

where

K ,2 +~() K 22~+
K +KaG, K K+4 K"-4

respectively.

To prove the boundedness of a(q), we note that

ffd.e,...

-0,

Io~q)¢, ¢) <_Ijaj(z~q)- -L- ,z I

+- 101 bj(, ,,dz I L(

+1[01Gdz Ih[t8GUaGdZ2j.
+ r(zl,q)[ a.

The first three integrals of RHS in (2.24) satisfy

E f f(zq) dzI<4 sup aja(z,q)j oKIokv (2.25)

0:52 .-:--(I i~. .

K 2 sup j(zq)jcI <IvfKkjv (2.26)

coOtdzl codIovObv, (2.27)lIf
respectively. From (2.2) to (2.4), it follows that, under hypotheses (H-i) and (H-3) (see

sup 1j,(Z~q)j :5 K 6 < 00 (2.28)
i,i<2 1-

where

K 6  -- t (R2 + 1).

From (2.18) and (2.25)-(2.28), we have

c(q)(€,) < (4K 6 + 2K2 + co)1 v1I v + I[T,,a .,. "

(2.29)

,, , -% .- . % . .,' ....'.... ]_,, . ' .,.. ,. -:. o',' '- =?) i "I I I l , .. .



Furthermore, the boundary integral term satisfies

wchflo f~z~ [¢0ladzl + jeh[¢ioaGuadz2I <IrjV!V (2.30)

which follows from the trace inequality ((1], p. 124)

[02 2I..vI s < 1(G)IOIV, (2.31)

where

Consequently, we can prove the boundedness property of a(q)(.,.).

To establish the continuity property, we note that, for any q and IQ,

I aM(q)(, ) - ( 1(0, 0)1

<f ,(aj(q) -aij(4)) ao dzI

- "." <2+IfZ f ( - bj (4)) iVidzi (2.32)

+ (b ( )

j<2a a

'~~~ thf r: (q r (4),q)- ()1° }ja..'-.. jj 12(q) - a12 (q) +- 1r) + r li}dz

-- '. aJ)- a 22(q) -a 22 ()i I 'b (4)1 ~i~ Ii-I11d-if1 Vzd

+~ ifid th dq$lj[0a~d

+J.-'.-'- R 1(q )

Under the hypotheses (11-1) and (H-3), we argue that

- . a12 (q) - a,2(4)1 max 1 1ir~ (9 )

2c t 2 R 2R132

a22(q) - a22 (4r)1 1 max(- 2 l)ir(q) - () ,

-.. *Ib(q) - ba(x)l (- 1-ma) 1 r(q) ,

10
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,.N.

jb2(q) - 2c1 tR R,32  -

Sb2(q)-b2( 1)r(q)

and

Ir~q) r( )l< ,r~q) - r(4)lco,,i-
r (q) r(4) T2

Applying these inequalities into (2.32), we have /'

- ()(¢, Ks)r(q) - r((4))€,,.IIviqv (2.33)

where

2C fa( R  
1 ) 2c1 2R 2R)32  (1  R 2ctR R/3 2  -

From the hypotheses (H-4), we can thus infer the continuity of the sesquilinear form

a(q)(.,.) with respect to the parameter q in Q. The proof has been completed.

For the system (2.7), the output can be represented as the restriction of fi(t) to a subset

E C (9 1 of positive measure, i.e,

y(t,q) ii(t,q)JE. (2.34)

We assume (see (H-0)) throughout that the admissible parameter set Q is a given compact

subset of R. The fundamental identification problem considered here is based on the

fit-to-data functional (see [2]) given by

1 t/ IN,
J(q) f 1 jly(t, q) - Yd(t) 1'dt (2.35)

where F = L 2(E), {yd(t)}UT are given observed data, and y(t,q) is the solution of (2.7)

corresponding to qEQ. Then our problem is stated as follows:

(IDP) Find q'cQ which minimizes J(q) given in (2.35) subject to the system (2.7) and

(2.34).

In the next section, we consider a family of approximating identification problems associ-

ated with (IDP).

N.-l
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III. APPROXIMATE IDENTIFICATION PROBLEMS

The approximation scheme we have employed is based on the use of a finite element

Galerkin approach to construct a sequence of finite dimensional approximating identifica-

tion problems. Let us choose UN=JO{¢,}, 1 as a set of basis functions in H'(G). That is,

for all N, {O}, are linearly independent and UN span{$ },= is dense in the V norm

in V = H'(G). We choose the approximation subspaces as

HON ON' __O}
H span

Then, we can define the approximate solution of Eq. (2.7) by

-" (t, q) w(t, q)¢ (3.1)

* i' <N

V- where w$(t,q) are chosen such that for j = 1,2,... ,N,

d"iiN " ~(t,'q) ON > +u(q) (iiN(t, q),¢ON) =L(t, q) (ON )  (3.2a) -< Ndt

and

SN(0)= < !T o T-1(q), ON > ON (3.2b)
i< N

Hence the system (2.7) and the output (2.34) can be approximated by solving the system

CNtiN(t,q) + AN(q)wN(t,q) = FN(t,q) (3.3a)

w N (0) = ---- (3.3b)

yN(t,q) = j wf(t,q)[g]E (3.4)

i< N

where

[CN],,j :=< ON, ON > for i,j 1,2,... ,N

[AN(q)]i, := a(q)(ON,O€) for i,j = 1,2, . ,N

[w N(t, q)], := w'(t, q) for i 1,2,... , N

[FN(t,q)], := L(t,q)(O V) for i= 1,2,...,N

12
0



i:< -'(q),, > f i 1,2,***,N.

The approximating identification problems thus take the following form:

(AIDP)N Find 4NEQ which minimizes

jN(q) f l'y (t, q) - yd(t) Fldt (3.5)

subject to the approximating system (3.3) and (3.4).

Our convergence results for the finite element schemes are summarized in the following

two theorems.

Theorem 2: Let {qM} C Q be a sequence such that qM .- qEQ as M -- oo and

let iiN(qM) and ii(q) be the solutions of Eqs. (3.3) and (2.7) corresponding to qM and q,

respectively. Then, under hypotheses (H-0) to (H-6), we have jN(qM) - i4(q) strongly in

%5 2

-.,v
%.1 L (T; H'(G )) as N, M -- + c.

Theorem 3: Let 4N be a solution of the problem (AIDP)N. Then the sequence {4N}

admits a convergent subsequence {JNk} with Nk - q as k -- oo. Moreover, 4 is a solution

of the problem (IDP).

The proof of Theorem 2 follows from the general convergence framework for parameter

identification problems given in [3] and [4]. To ensure the desired convergence, it suffices to

show that the sesquilinear form o(q)(.,.) satisfies the continuity, coercivity and bounded-

ness conditions as stated in [3], [4]. But this is a result of Theorem 1 under the hypotheses

(H-0) to (H-4).

S. The proof of Theorem 3 can be carried out by using Theorem 2 and the compactness

* of Q. Since 4N is a solution of the problem (AIDP)N, it is clear that

jN( N) _ jN(q) for VqEQ. (3.6)

Thus, if we can argue that for any qM -.+ q in Q,

yN(qM) _+ y(q) in L 2(T;F) as N,M - oo,

. .13



then, we can obtain the desired inequality

J(q) < J(q) for VqEQ

by taking limits in (3.6). But the needed arguments follow immediately from Theorem 2

.w since

4-Y(WN) - Y I'c)H1T;F) < KliiN(4Nk) - (T

where K is independent of 4Nk and 4.

IV. OPTIMIZATION TECHNIQUES FOR THE APPROXIMATE ESTIMA-

TION PROBLEMS

Let 4N be an optimal solution of the problem (A.rDP)N. Then a necessary condition

* for 4' to be optimal is characterized by

VqJN(4N) - (q - N) > 0 for VqEQ (4.1)

where Vq denotes the gradient of jN(q) with respect to q. From Eq. (3.5), we have for

k. --1, 2,., n

jN(q tf (WN(tq))I(CNwN(t, q) - YN(t))dt

where

W,=A qwN (t, q)
NA

[CNIy =< ON, V >F for i,jz=1,2,.-.,N

[YdN(t)]. =< yd(t),(k >F for j = 1,2,...,N.

Using the same procedure as in [91, we can evaluate the gradient vector by (fork =

1,2,.. ,n)

[VqJN(q)] v(t,q)'{[Vq AN(q)]wN(t,q) - VqF N(t,q)}dt (4.2)

where vN(t, q) is the solution of the adjoint equation,

"'--cNiN(t,q) + AN(q)vN(t,q) Yd(t)- CbNwN(t,q) (4.3a)

14
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vN(tf, q) =0. (4.3b)

In Eq. (4.3a), the matrix A*N(q) is given by

! ', ~~[A*N(q)],3  *q)¢,

where a* (q)(.,.) is the adjoint sesquilinear form of a(q)(.,.) defined by

.t.h

+ [OV)adz. + I flkpV)IGuG, Z2

:.f: ro, z1)(¢ f1

+ flr'(qIq, z1) r (q, z) - 1[uizkaG¢dzz

1 ,q[ , dz)
. f [001acdzi.
A. r (q, zi)

Consequently, the optimality condition (4.1) of the problem (AIDP)N can be characterized

by -

n

t vN(t, N)l{[VqkAN( N)]wN(t, N)- VqN(t,F N)}(q - 4kN) > 0 for all q6Q.

(4.4)

In the sequel, we discuss computer implementation of numerical schemes for the prob-

lem (AIDP)N. Since we can evaluate the gradient of the cost function using (4.2), many

* optimization techniques for the constrained problems are readily applicable to our problem

(see [11] and the references therein). For ease in exposition, here the compact set Q C RN "

is assumed to be defined by

Q = {q (q, 2, q,...,,)cRNq < i (4.5)

where fl and i denote a given constraint matrix and vector, respectively. For the numer-

%%N
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a particularly useful technique for optimization problems with the linear inequality con-

straints such as those given in (4.5). We use this method as presented in [12]; the iterative

algorithm for finding ,N can thus be stated as follows:

_* Step 0: Choose an initial value q(0) in Q and set i = 0.

Step 1: If flq(4) < -q set

g(i) = _VqjN(q('))

and proceed to Step 3; otherwise, proceed to Step 2.

Step 2: Compute the current direction by

PV J N (()), g(I) = PqjN~q ( )

9 "pVqJN(q(i))l

W .. where

T-1,(Ilprl,) - ip
P =1

and rip includes the gradient of all currently active constraints associated with matrix H.

If g(') =f 0, proceed to Step 3; otherwise, proceed to Step 4.

Step 9: Compute \(.n satisfying

jNi~~~() mi N( + Ag(')

J q(') + ,2ngC)) m  J= (q)

where . is the largest step that may be taken from q(') along g(') without violating any

constraint. If A = A, then add the new contraints to the matrix TIP and proceed to Step

4; otherwise, the new approximation to the solution is given by

q(i+l) = q(i) + A(ng().
0I

Replace i + 1 by i and return to Step 1.

Step 4: Compute the vector O(q) by

.... "O(q(i)) = ( ~prj')-lIpVpJ(q(i)).
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If all components of 0 are nonnegative, then set

' = q(t)

and terminate the computation; otherwise, delete the column of IH, corresponding to the

smallest component of (q(')), replace i + 1 by i and return to Step 1.

V. NUMERICAL PROCEDURES

In a series of numerical experiments, we used a test example constructed as follows:

We chose a function r(q), generated the corresponding solution numerically, added random

noise, and then used this as "data" for our inverse algorithm. The parameter function

r( , q) to be identified is a piecewise cubic polynomial function (see [6] for more details).

* We denote the knot sequence for r by

_ 0= o < T <" n< T n+ =

and the unknown function r( , q) is given by

p.. .**

= a, + a2,i( - Fin) + a 3.,(e - rtl)2/2 + a 4,i(e - r,")3/6 (5.1), ' . ~ ~~~for rin < e <! rin, i=0,1..n -

The unknown parameter vector q {qi}!= is then given by

q= r(ri) for i =1,2,.--,n. (5.2)

* further, we assume

.. "~p 0O, q) p. p,(1, q) = (5.3)-.""

p0'(O,q) = p'(1,q) = 0. (5.4)

- Substituting (5.2), (5.3), and (5.4) into (5.1), the coefficients {ak,i} can be determined

uniquely and r(e, q) satisfies the hypotheses (H-I), (H-2), and (H-4). In order to guarantee

the hypothesis (11-3), we impose the constraints

3 < q; -< #2  for i=1,2, .- ,n.

17
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-Hence, the matrix I1 (2n x n) and the vector (2n x 1) defining the admissible parameter

class Q (see (4.5)) is given by

-0 )32

11 P2
0 1 L -01~ J

To discretize the system model by the finite element method, the domain G is divided

into a finite number of elements {ek}_ (K < N) and a number of nodes defined by

= 2, z)i=1 are selected in G. For convenience of computations, we set t = 1 in c.
Each element is preassigned as an axiparallel rectangle with nodes at the vertices. The

restriction of Of' to any element ek is given by the bilinear polynomial form,

N(Z) = +.el ) + C c,(,. (5.5)

forz= (z1,z2 )Eek k=1,2,...,K and i=1,2,..-,N.

The coefficients {c(.j} can be chosen such that each polynomial form (5.5) satisfies the

properties of a piecewise bilinear basis function (see e.g., [1], Ch. 5). The integration of

element matrices CN, AN(q), A*N(q), and CN, and the element vectors FN and Yd can

be computed numerically by a Gauss-Legendre formula. Thus, the state model (3.3) and

its adjoint system (4.3) can be solved numerically by an implicit scheme with respect to

discrete time t = ih (i = 0, 1,.., m) where h = t/m. The evaluation of cost functional jN

and its gradient Vq jN is the computationally expensive part of our algorithm since these

involve the integration of the states wN(t, q) and the adjoint states vN(t, q) with respect

OF, to time t over T. This can be accomplished by using the two-point Gauss formula.

The input data are preassigned as

" 0(z) = -10, for zcG

f( ) 0, for caG1 .

18
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"?.". Tihe known parameters cl, co, and h in Eq. (1.1) were set as .

c, 0.034, c2 0.001, h =0.1.

""'" The observed data {yd(t)} were generated by solving the finite element model (3.3). The.-

number of finite elements and nodes in the numerical experiments were set as K =256 =,

,., 16 x 16) and N = 289 (= 17 x 17), respectively. The final time and number of time

d .'.divisions were taken as tf = 10 and m = 100. Random noise at various levels from 0% to

~50'c was added to the numerical solution, thereby producing simulated noisy "data" for

~~the algorithm. The set E relative to data acquisition was given by .

I U N.,

where N denotes a neighborhood of points at G , i.e.,

.N, = (x i - , x c + )  for 1 21. p.

Using such data, the estimation algorithm given in Section 4 was tested.

Example 1: In this example, the dimension of unknown vector was taken as n 4 and the

knot hm.uhe s re vo t q i was given by " Sn

,r-4 = i /5 for i =1,2,...,5.

.51

wThe value deotte aamneghb ro ofr pon atsC, ~.

-'

• fl 2 1.1, respectively. The initial guesses for the parameters were given by ,.

5,

q(0) = 1 for i = 1,2,3,4. ,p

The number of sensors was taken as p 9. Table 1 shows the estimated parameter numer-
ical results for the data with noise free, 5%, 10%, and 50% relative noise and Figure 5.1

19 q
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"5 shows the estimated parameter function r(, 4N) and true function r(E, q) which correspond

to the estimated boundary shape and true boundary for the 10% noise case.

41 42 43 4 j1 i :5,4 jqj - 4i,' O
True Value 0.800 0.800 0.800 0.800

Initial Guess 1.000 1.000 1.000 1.000
Noise iteration 6 0.850 0.882 0.880 0.849 3.36 x 10-2
Free iteration 13 0.820 0.819 0.821 0.819 9.92 x 10 - 3

iteration 17 0.810 0.785 0.810 0.806 5.39 x 10- 3

5% iteration 6 0.851 0.879 0.878 0.844 3.25 X 10-2

Noise iteration 13 0.828 0.821 0.818 0.820 1.09 X 10-2
,_,_iteration 17 0.815 0.797 0.791 0.814 5.61 X 10- 3

10% iteration 6 0.849 0.853 0.861 0.834 2.51 x 10-2
Noise iteration 14 0.787 0.847 0.835 0.750 1.95 x 10-2
____iteration 18 0.827 0.792 0.799 0.796 7.20 x 10 - 3

50% iteration 7 0.922 0.820 0.748 0.808 3.36 x 10-2

Noise iteration 15 0.902 0.793 0.772 0.886 3.40 x 10-2

, iteration 19 0.813 0.783 0.727 0.794 1.90 X 10-2

Table 5.1. True Value and Estimated Values in Example 1.

e% Example 2: We chose the same dimension of unknown parameter vector as in Example 1

and we also used the same knot sequence. In this example, however, the values of the true
.. parameters were preassigned as

q I q4 =0.9

and

,:,':.:q 2 q 3 0 .6 ,y,

respectively. The lower and upper bounds, initial guess of unknown vector, and number

- of sensors were given by the same values as in Example 1. Table 5.2 shows the numerical

-- results obtained here for the various sets of noisy data. Figures 5.2 and 5.3 represent the

,"-". estimated parameter function for the case of 20% and 50% noisy observation case.

- 20
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True Value 0.900 0.600 0.600 0.900

Initial Guess 1.000 1.000 1.000 1.000

"Noise iteration 16 0.817 0.792 0.778 0.821 7.14 X 10-2

Free iteration 25 0.894 0.607 0.602 0.893 2.85 x 10- 3

5% iteration 16 0.953 0.694 0.811 0.906 5.93 x 10-2

Noise iteration 26 0.896 0.604 0.605 0.898 1.93 x 10- 3

10% iteration 16 0.902 0.807 0.674 0.949 5.62 x 10-2
Noise iteration 27 0.908 0.594 0.581 0.896 5.39 X 10 - 3

0'20% iteration 16 0.917 0.683 0.812 0.904 5.70 x 10-2

Noise iteration 27 0.902 0.603 0.610 0.887 4.19 x 10- 3

25% iteration 16 0.939 0.819 0.684 0.962 6.15 X 10-2

Noise iteration 26 0.868 0.563 0.563 0.874 1.66 x 10-2

50% iteration 16 1.02 0.618 0.680 0.915 3.64 x 10-2
-4-.

Noise iteration 28 0.951 0.574 0.599 0.953 1.95 X 10-2

2 Table 5.2. True Value and Estimated Values in Example 2.

S

Example 3: In this example, we deal with a somewhat more difficult case as compared -

with Examples 1 and 2. We set the dimension of parameter space as n 8 and we chose

the knot sequence as

{7r} T o 7"1= i/9 for i 0,1,2,... 9.

Zg.4

True parameter values were given by

.q4'= q8  0.99,

q2 =q7 0.98,

q3= q4 = 0.94,
m

and

q5 q6 0.60,

respectively. Figure 5.4 shows the corresponding boundary shape to be identified. The

number of sensors was taken as p 17. The bounds and initial guesses for the parameter

22
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Figure 5.4. Unknown boundary shape in Example 3.

vector were the same as in Examples 1 and 2. We ran numerical experiments for the case

of noise free, 5%, 10%, 20%, and 50% noisy observations. Table 5.3 shows the estimated

parameter vector obtained here. Figure 5.5 represents the estimated boundary curve for

-~ the 10% noisy data.
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41 q2 q3 44 45 4r 7 48 <8 qj q
KTrue Value 0.990 0.980 0. '40 0.600 0.600 0.940 0.980 0.990

Initial Guess 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 ________

* ,Noise iteration 16 1.039 1.027 0.887 0.808 0.674 0.926 1.029 1.033 3.08 x 10-2
Freiteration 23 1.014 1.007 0.943 0.624 0.615 0.943 1.003 1.017 7.2 7 x 10- '

5%'/ iteration 16 1.042 1.031 0.879 0.749 0.666 0.920 1.049 1.031 2.85 x 10-2 Q

Nos iteration 23 1.023 0.987 0.948 0.626 0.628 0.937 1.002 1.020 7.90xi0
10% iteration 16 1.037 1.058 0.899 0.733 0.721 0.881 1.044 1.025 2.82 x 10-'

Noise iteration 24 1.010 1.009 0.955 0.586 0.578 0.948 0.994 1.000 6.20 x 10-'
2 0% iteration 16 1.034 0.989 0.950 0.592 0.595 0.994 1.018 1.061 1.61 X 10-2

Noise iteration 24 1.022 0.985 0.915 0.616 0.610 0.941 0.993 1.061 1.06 x 10-2

5 0% iteration 16 1.090 1.176 0.872 0.637 0.654 0.933 1.166 1.096 4.01 x 10-*

Noise iteration 24 1.030 1.033 0.939 0.566 0.603 0.933 1.046 1.052 1.47 X 10-2

Table 5.3. True Value and Estimated Values in Example 3.

* Throughout the numerical experiments, we checked the robustness of the algorithm with

respect to noise in the observed data. Results in three examples indicated that the algo-

rithm worked very well (i.e., as expected) for various noise levels. Furthermore, we checked

the sensitivity of the algorithm with respect to the number of sensors. Specifically, we com-

pared in Examples 2 and 3 the number of sensors (p) with the dimension of parameter

spae n).InExample 2, for data with p=5(> n=4), the algorithm still yields an almost

identical fit (to that for p = 9) even in 50% noise case while the fit could not be achieved

under the reduced observation case p = 3(< n). Also, in Example 3, (where n =8) the

F-fit could not be obtained with p =3 or p =5, while the algorithm performed well with

* p = 9 (> n). Carrying out a large number of other numerical tests in addition to those

reported for Examples 2 and 3, we suggest that the algorithm requires a number of sensors

which is at least equal to the number of dimensions of parameter space, i.e., p > n. '

VI. CONCLUDING REMARKS

In this paper, we have discussed techniques for estimating the system boundary shape

* in two dimensional parabolic systems. By using a simple coordinate transformation tech-a

nique, the parabolic PDE defined on unknown spatially varying domain was converted%
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into the same type PDE with unknown coefficients defined on a fixed domain. Thus, our

fundamental approach was placed within the theoretical framework for parameter identifi-

cation problems given in [21,[3], and [4]. The practical utility of our algorithm is supported

N. through a series of numerical experiments, a summary of which is given in Section 5. These

simulations were carried out on the Sun Microsystems at ICASE, NASA Langley Research

%* Center. For three different numerical examples, using data with no noise, the proposed '

algorithm yields an almost perfect fit, while, as expected, the fit degenerates significantly

as noise in the observation becomes more pronounced.

Although here we discuss only the case where the unknown boundary shape is rep-

resented by a simple function of one variable, our basic parameter estimation ideas and
techniques can be readily extended to consider more general classes of geometrical struc-

tures for the system boundary. For example, we may also treat the case where the unknown

boundary shape is characterized by '

r(q,X1, X2 ) =0 for (X1, X2 ) ER'.

We are currently pursuing investigations for these cases.
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